numpy.clip() in Python
The Python numpy.clip() function used to clip (limit) the values in an given array. With given interval values outside the interval edges will be clipped to the interval edges.
Basic Syntax
Following is the basic syntax for numpy.clip() function in Python:
numpy.clip(arr, a_min, a_max, out=None)
And the parameters are:
Parameter | Description |
---|---|
arr | This is input array. |
a_min | The minimum value. If None provided the cliping is not performed on lower edges. Not more than one of a_min and a_max should be None. If one of a_min and a_max is array-like then three arrays will be broadcasted. |
a_max | The maximum value. If None provided the cliping is not performed on upper edges. Not more than one of a_min and a_max should be None. If one of a_min and a_max is array-like then three arrays will be broadcasted. |
Return Value
This function returns 2D specialized array from a string of data or array-like object.
Example
Following are the examples:
Example 1
# Python3 program for demonstration of clip() function # importing the numpy import numpy as np input_array = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] print ("The input array : ", input_array) output_array = np.clip(input_array, a_min =[50, 30, 20, 50, 20, 20, 80, 80, 100, 90], a_max = 70) print ("The output array : ", output_array)
The output for the above program is as given below:
The input array : [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
The output array : [ 50, 30, 30, 50, 50, 60, 80, 80, 100, 90]
The output array : [ 50, 30, 30, 50, 50, 60, 80, 80, 100, 90]
Example 2
# Python program for illustration of numpy.clip() function # importing the numpy module import numpy as np input_array = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] print ("The input array : ", input_array) output_array = np.clip(input_array, a_min = 30, a_max = 80) print ("The output array : ", output_array)
The output for the above program is as given below:
The input array : [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
The output array : [30, 30, 30, 40, 50, 60, 70, 80, 80, 80]
The output array : [30, 30, 30, 40, 50, 60, 70, 80, 80, 80]
LATEST POSTS
-
How to Print Without Newline in Python
-
How to Upgrade PIP in Windows
-
Numpy Zeros np.zeros() in Python
-
PHP explode() function
-
numpy.append() in Python
-
How to Export Pandas DataFrame to the CSV File
-
Bubble Sort in Java
-
Python length of list
-
numpy.loadtxt() in Python
-
Java JList Basics with Examples
-
numpy.sum() in Python
-
Python raw_input() function with Example