Does my pseudocode make sense? [duplicate]
I believe my code is now foolproof. I will write up the pseudocode now. But I do have one question. Why does DRJava ask that I return something outside of my if statements? As you can see I wrote for ex: "return 1;" just because it asked. It will never return that value however. Can someone explain this to me?
public class assignment1question2test {
public static void main(String[] args) {
int[] a = new int[1];
int l = 0;
int r = a.length-1;
for(int i=0; i<=r; i++) {
a[i] = 1;
}
a[0] = 10;
for (int i=0; i<=r; i++) {
System.out.println(a[i]);
}
System.out.print(recursiveSearch(a,l,r));
}
public static int recursiveSearch (int[] a, int l, int r) {
int third1 = (r-l)/3 + l;
int third2 = third1*2 - l + 1;
if (r-l == 0) {
return l;
}
System.out.println("i will be checking compare from " + l + " to " + third1 + " and " + (third1 + 1) + " to " + third2);
int compareResult = compare(a,l,third1,third1 + 1, third2);
if(r-l == 1) {
if (compareResult == 1) {
return l;
}
else {
return r;
}
}
if (compareResult == 0) {
return recursiveSearch(a,third2 + 1, r);
}
if (compareResult == 1) {
return recursiveSearch(a,l,third1);
}
if (compareResult == -1) {
return recursiveSearch(a,third1 + 1, third2);
}
return 1;
}
public static int compare(int[] a, int i, int j, int k, int l) {
int count1 = 0;
int count2 = 0;
for(int g=i; g<=j; g++) {
count1 = count1 + a[g];
}
for(int g=k; g<=l; g++) {
count2 = count2 + a[g];
}
if (count1 == count2) {
return 0;
}
if (count1 > count2) {
return 1;
}
if (count1 < count2) {
return -1;
}
return 0;
}
}
FINAL PSEUDOCODE I THINK
Algorithm: recursiveSearch (a,l,r)
Inputs: An array a, indices l and r which delimit the part of interest.
Output: The index that has the lead coin.
int third1 ← (r - l)/3
int third2 ← third1*2 - l + 1
if (r-l = 0) then
return l
int compareResult ← compare(a,l,third1,third1 + 1,third2)
if (r-l = 1) then
if (compareResult = 1) then
return l
else
return r
if (compareResult = 0) then
return recursiveSearch(a, third2 + 1, r)
if (compareResult = "1") then
return recursiveSearch(a,l,third1)
if (compareResult = "-1") then
return recursiveSearch(a,third1 + 1,third2)
Answers:
String compareResult ← compare(a,l,mid,mid,r)
Here you check the middle element twice, make it:
String compareResult ← compare(a,l,mid,mid+1,r) Apart from that your algorithm seems fair enough to me.